This function is a wrapper around glmnet::glmnet() that uses a column from
x as an offset.
Usage
glmnet_offset(
x,
y,
family,
offset_col = "offset",
weights = NULL,
lambda = NULL,
alpha = 1
)Arguments
- x
Input matrix
- y
Response variable
- family
A function or character string describing the link function and error distribution.
- offset_col
Character string. The name of a column in
datacontaining offsets.- weights
Optional weights to use in the fitting process.
- lambda
A numeric vector of regularization penalty values
- alpha
A number between zero and one denoting the proportion of L1 (lasso) versus L2 (ridge) regularization.
alpha = 1: Pure lasso modelalpha = 0: Pure ridge model
Value
A glmnet object. See glmnet::glmnet() for full details.
Details
Outside of the tidymodels ecosystem, glmnet_offset() has no advantages
over glmnet::glmnet() since that function allows for offsets to be
specified in its offset argument.
Within tidymodels, glmnet_offset() provides an advantage because it will
ensure that offsets are included in the data whenever resamples are created.
The x, y, family, lambda, alpha and weights arguments have the
same meanings as glmnet::glmnet(). See that function's documentation for
full details.
Examples
us_deaths$off <- log(us_deaths$population)
x <- model.matrix(~ age_group + gender + off, us_deaths)[, -1]
glmnet_offset(x, us_deaths$deaths, family = "poisson", offset_col = "off")
#>
#> Call: glmnet::glmnet(x = x, y = y, family = family, weights = weights, offset = offsets, alpha = alpha, lambda = lambda)
#>
#> Df %Dev Lambda
#> 1 0 0.00 159700
#> 2 1 19.30 145600
#> 3 1 29.40 132600
#> 4 1 35.78 120800
#> 5 1 40.18 110100
#> 6 2 44.76 100300
#> 7 2 52.46 91410
#> 8 2 58.11 83290
#> 9 2 62.41 75890
#> 10 2 65.75 69150
#> 11 2 68.40 63010
#> 12 3 70.59 57410
#> 13 4 73.19 52310
#> 14 4 76.34 47660
#> 15 4 78.94 43430
#> 16 4 81.10 39570
#> 17 4 82.91 36050
#> 18 4 84.42 32850
#> 19 4 85.70 29930
#> 20 4 86.77 27270
#> 21 5 87.80 24850
#> 22 5 88.77 22640
#> 23 6 89.91 20630
#> 24 6 91.14 18800
#> 25 6 92.19 17130
#> 26 6 93.08 15610
#> 27 6 93.85 14220
#> 28 6 94.50 12960
#> 29 6 95.05 11810
#> 30 6 95.52 10760
#> 31 6 95.92 9802
#> 32 6 96.27 8931
#> 33 6 96.56 8138
#> 34 6 96.80 7415
#> 35 6 97.01 6756
#> 36 6 97.19 6156
#> 37 6 97.34 5609
#> 38 7 97.48 5111
#> 39 7 97.75 4657
#> 40 7 98.00 4243
#> 41 7 98.21 3866
#> 42 7 98.39 3523
#> 43 7 98.55 3210
#> 44 7 98.69 2925
#> 45 7 98.81 2665
#> 46 7 98.91 2428
#> 47 7 99.00 2212
#> 48 6 99.08 2016
#> 49 6 99.13 1837
#> 50 6 99.17 1674
#> 51 6 99.21 1525
#> 52 6 99.24 1389
#> 53 6 99.26 1266
#> 54 6 99.29 1153
#> 55 6 99.30 1051
#> 56 6 99.32 958
#> 57 6 99.33 873
#> 58 7 99.36 795
#> 59 7 99.38 724
#> 60 7 99.41 660
#> 61 7 99.42 601
#> 62 7 99.44 548
#> 63 7 99.45 499
#> 64 7 99.46 455
#> 65 7 99.47 414
#> 66 7 99.48 378
#> 67 7 99.49 344
#> 68 7 99.49 314
#> 69 7 99.50 286
#> 70 7 99.50 260
#> 71 7 99.51 237
#> 72 7 99.51 216
#> 73 7 99.51 197
#> 74 7 99.51 179
#> 75 7 99.52 164