Skip to contents

Convert aggregate transaction experience studies to the trx_df class.

Usage

as_trx_df(
  x,
  col_trx_amt = "trx_amt",
  col_trx_n = "trx_n",
  col_trx_flag = "trx_flag",
  col_exposure = "exposure",
  col_percent_of = NULL,
  col_percent_of_w_trx = NULL,
  col_trx_amt_sq = "trx_amt_sq",
  start_date = as.Date("1900-01-01"),
  end_date = NULL,
  conf_int = FALSE,
  conf_level = 0.95
)

is_trx_df(x)

Arguments

x

An object. For as_trx_df(), x must be a data frame.

col_trx_amt

Optional. Name of the column in x containing transaction amounts.

col_trx_n

Optional. Name of the column in x containing transaction counts.

col_trx_flag

Optional. Name of the column in x containing the number of exposure records with transactions.

col_exposure

Optional. Name of the column in x containing exposures.

col_percent_of

Optional. Name of the column in x containing a numeric variable to use in "percent of" calculations.

col_percent_of_w_trx

Optional. Name of the column in x containing a numeric variable to use in "percent of" calculations with transactions.

col_trx_amt_sq

Optional and only required when col_percent_of is passed and conf_int is TRUE. Name of the column in x containing squared transaction amounts.

start_date

Experience study start date. Default value = 1900-01-01.

end_date

Experience study end date

conf_int

If TRUE, future calls to summary() will include confidence intervals around the observed utilization rates and any percent_of output columns.

conf_level

Confidence level for confidence intervals

Value

For is_trx_df(), a length-1 logical vector. For as_trx_df(), a trx_df object.

Details

is_trx_df() will return TRUE if x is a trx_df object.

as_trx_df() will coerce a data frame to a trx_df object if that data frame has the required columns for transaction studies listed below.

as_trx_df() is most useful for working with aggregate summaries of experience that were not created by actxps where individual policy information is not available. After converting the data to the trx_df class, summary() can be used to summarize data by any grouping variables, and autoplot() and autotable() are available for reporting.

At a minimum, the following columns are required:

  • Transaction amounts (trx_amt)

  • Transaction counts (trx_n)

  • The number of exposure records with transactions (trx_flag). This number is not necessarily equal to transaction counts. If multiple transactions are allowed per exposure period, trx_flag will be less than trx_n.

  • Exposures (exposure)

If transaction amounts should be expressed as a percentage of another variable (i.e. to calculate utilization rates or actual-to-expected ratios), additional columns are required:

  • A denominator "percent of" column. For example, the sum of account values.

  • A denominator "percent of" column for exposure records with transactions. For example, the sum of account values across all records with non-zero transaction amounts.

If confidence intervals are desired and "percent of" columns are passed, an additional column for the sum of squared transaction amounts (trx_amt_sq) is also required.

The names in parentheses above are expected column names. If the data frame passed to as_trx_df() uses different column names, these can be specified using the col_* arguments.

start_date, and end_date are optional arguments that are only used for printing the resulting trx_df object.

Unlike trx_stats(), as_trx_df() only permits a single transaction type and a single percent_of column.

See also

trx_stats() for information on how trx_df objects are typically created from individual exposure records.

Examples

# convert pre-aggregated experience into a trx_df object
dat <- as_trx_df(agg_sim_dat,
                 col_exposure = "n",
                 col_trx_amt = "wd",
                 col_trx_n = "wd_n",
                 col_trx_flag = "wd_flag",
                 col_percent_of = "av",
                 col_percent_of_w_trx = "av_w_wd",
                 col_trx_amt_sq = "wd_sq",
                 start_date = 2005, end_date = 2019,
                 conf_int = TRUE)
dat
#> 
#> ── Transaction study results ──
#> 
#>Study range: 2005 to 2019
#>Transaction types: wd
#>Transactions as % of: av
#> 
#> # A tibble: 180 × 17
#>    pol_yr inc_guar qual  product exposure_n claims_n      av exposure_amt
#>     <int> <lgl>    <lgl> <fct>        <dbl>    <int>   <dbl>        <dbl>
#>  1      1 FALSE    FALSE a             880.        3 1204699     1168118.
#>  2      1 FALSE    FALSE b             885.        9 1209902     1154044.
#>  3      1 FALSE    FALSE c            1685.       12 2265030     2170944.
#>  4      1 FALSE    TRUE  a            1073.       11 1433862     1375173.
#>  5      1 FALSE    TRUE  b            1086.        8 1449080     1396136.
#>  6      1 FALSE    TRUE  c            2111.       13 2907067     2794199.
#>  7      1 TRUE     FALSE a            1299.        9 1796934     1744069.
#>  8      1 TRUE     FALSE b            1230.        2 1732269     1662742.
#>  9      1 TRUE     FALSE c            2702.       11 3700302     3590893.
#> 10      1 TRUE     TRUE  a            1601.        5 2234728     2147418.
#> # ℹ 170 more rows
#> # ℹ 9 more variables: claims_amt <dbl>, av_sq <dbl>, exposure <int>,
#> #   trx_amt <dbl>, trx_n <dbl>, trx_flag <int>, trx_amt_sq <dbl>,
#> #   av_w_trx <dbl>, trx_type <chr>
is_trx_df(dat)
#> [1] TRUE

# summary by policy year
summary(dat, pol_yr)
#> 
#> ── Transaction study results ──
#> 
#>Groups: pol_yr
#>Study range: 2005 to 2019
#>Transaction types: wd
#>Transactions as % of: av
#> 
#> # A tibble: 15 × 21
#>    pol_yr trx_type trx_n trx_flag trx_amt exposure avg_trx avg_all trx_freq
#>     <int> <chr>    <dbl>    <int>   <dbl>    <int>   <dbl>   <dbl>    <dbl>
#>  1      1 wd       16942     7921  419763    19995    53.0    21.0     2.14
#>  2      2 wd       16900     7923  440919    18434    55.7    23.9     2.13
#>  3      3 wd       16679     7796  449349    16806    57.6    26.7     2.14
#>  4      4 wd       16193     7575  440510    15266    58.2    28.9     2.14
#>  5      5 wd       15353     7153  420462    13618    58.8    30.9     2.15
#>  6      6 wd       14382     6708  411073    12067    61.3    34.1     2.14
#>  7      7 wd       13248     6183  396732    10541    64.2    37.6     2.14
#>  8      8 wd       12034     5603  369098     9130    65.9    40.4     2.15
#>  9      9 wd       10461     4868  330507     7591    67.9    43.5     2.15
#> 10     10 wd        8978     4155  290363     6185    69.9    46.9     2.16
#> 11     11 wd        7470     3448  243606     4897    70.7    49.7     2.17
#> 12     12 wd        5079     2314  176383     3093    76.2    57.0     2.19
#> 13     13 wd        3310     1495  119153     1937    79.7    61.5     2.21
#> 14     14 wd        2119      946   85073     1182    89.9    72.0     2.24
#> 15     15 wd         982      430   40328      510    93.8    79.1     2.28
#> # ℹ 12 more variables: trx_util <dbl>, av_w_trx <dbl>, av <dbl>,
#> #   pct_of_av_w_trx <dbl>, pct_of_av_all <dbl>, trx_util_lower <dbl>,
#> #   trx_util_upper <dbl>, pct_of_av_w_trx_lower <dbl>,
#> #   pct_of_av_w_trx_upper <dbl>, pct_of_av_all_lower <dbl>,
#> #   pct_of_av_all_upper <dbl>, trx_amt_sq <dbl>